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Fig. 1. The D-,D-lactide molecule showing the atomic numbering. 

Fig. 2. Stereoscopic view of the molecular packing. 

interpreted by Holten et al. (1971) are in agreement 
with our results. Therefore, in principle, polymers 
derived from the title compound may contain longer 
isotactic sequences. 
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Abstract 

It is demonstrated that the estimated standard deviations of 
parameters obtained from partial-matrix least-squares refine- 

*Contribution No. 6419 from the Arthur Amos Noyes 
Laboratory of Chemical Physics. 

ment are smaller than, or equal to, the corresponding 
standard deviations obtained from full-matrix refinement. 

It is the purpose of this note to demonstrate that a standard 
deviation obtained from a diagonal, or from any form of 
block-diagonal, least-squares refinement is a minimum 
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estimate that will generally be smaller than the e.s.d, obtained 
from a full-matrix refinement. While this concept is by no 
means new (see, e.g., Hodgson & Rollett, 1963; Dunitz, 
1979), we have not before seen it proved except for the 
diagonal case (Sparks, 1958). 

Consider the full matrix of normal equations, A, which is 
positive definite and Hermitian (in this case, A is real and 
symmetric). Let us partition A as follows: 

A = , (1) 
A21 A22 

where All and A22 are square matrices of orders n I and n2. 
We similarly partition the inverse matrix: 

( B I '  B12 / 
A -I = B = \ 821 B22] , (2) 

where again Bll and B22 are square matrices of orders n i and 
n 2. The elements of A -l (b/j) are the variance and 
covariance terms for the various parameters x v We shall 
show here that the determinant of any principal minor of B, 
such as det B11, is greater than or equal to (det A~I) -1. More 
generally the evaluation of (All)- l ,  which is obtained by any 
blocked-matrix approximation to A, yields a set of variances 
which are less than or equal to the diagonal elements of B il 
as obtained from the complete A matrix. 

Since A is Hermitian positive definite, we can write the 
Cholesky factorizations 

A = R R * ;  A - l = ( R - l )  * R  -1, (3) 

where R and R -l are right-triangular (r/j = 0 for i > j )  and 
where R* is left-triangular and has elements i, j equal to rji; 
all the diagonal elements ri~ are positive (see, e.g., Franklin, 
1968, pp. 203-208). We then partition R and R -l" 

.=('o ,l=(So s)822 ,4> 
where Rll and Slg are square (and right-triangular) matrices 
of order nl. 

From (3) and (4), we see that 

All = Rll(R11)* + R12(R12)* 

and 
Bll = (St1)* Sir  

Hence, det B11 = (det Rll) -2. 
We now write equation (5) as follows: 

A11 = RtI(I + Q)(R11)*, 

where Q is a positive semidefinite matrix: 

Q = Sll RI2(R12)* (St1)*. 

We then have 

(5) 

det(! + Q) _> I, (9) 

with equality only if Q = 0, i.e., only if Rl2 = 0 -- or, since 
Al2 = RI2(R22)*, only if A12 = 0. 

From (6), (7), and (9) we obtain 

det All = (det Rll) 2 det(l + Q) 

det A11 _> (det Rll) 2 (10) 

det All > (det Bit)-1; 
or, as we set out to demonstrate, 

det Bll _> (det All) -l. (11) 

By permutation of indices, the inequality (11) can be 
extended to all the principal minors. Consider an n x n 
permutation matrix P which, by the multiplication PrAP,  
interchanges any desired rows and columns of A. Since 
p r p  = I, we have 

(pr Ap)-I = pr A- '  P = pr BP. (12) 

Let k I . . . . .  k n be the resulting ordering of the rows and 
columns 1 . . . . .  n. The inequality (11) then implies, for any 
principal minor of order n l, 

det (bkik) >_ [det ( % k ) l  i ( i , j  = 1 . . . . .  nl). (13) 

For example, ifn = 3, nl = 2, and kl ,k2,k 3 = 3,1,2, then 

I I I  i -I b33 b31 a33 a31 
> , (14) 

b13 bll al3 all 

with equality only if a12 = a32 = 0. 
Relationship (11) holds for any number of sub-matrices 

All of any order, including nl = 1 for the diagonal 
approximation. Clearly the extent of the inequality will 
depend upon the magnitudes of the off-diagonal elements 
within A12, and will be larger for more highly correlated 
parameters such as Gaussian coefficients B or U and atomic 
coordinates in oblique crystal systems. In particular, as 
Templeton (1959) has pointed out, neglect of off-diagonal 
elements will lead to coordinate e.s.d.'s that are under- 
estimated by a factor cos a i bi, where a i and b~ are the real 
and reciprocal axes - plus, of course, by additional factors 
arising from any additional correlations. We repeat Dunitz's 
(1979) recommendation that highly correlated parameters be 
included, in so far as possible, in the same matrix block, to 
increase both the rate of convergence and the reliability of 
the resulting error estimates. 

We thank Drs B. Santarsiero, V. Schomaker, and a referee 
(6) for helpful suggestions. 
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